metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraagua(2,2'-bipyridine- $\kappa^2 N, N'$)magnesium(II) bis(4-fluorobenzoate)

Bi-Song Zhang,^a* Jian-Ping Qiu,^a Li-Hua Liu^a and Wei Xu^b

^aCollege of Material Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China, and ^bMunicipal Key Laboratory of Inorganic Materials Chemistry, Institute for Solid State Chemistry, Ninbo University, Ningbo 315211, People's Republic of China Correspondence e-mail: zbs_jy@163.com

Received 4 November 2010; accepted 17 November 2010

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.005 Å; R factor = 0.070; wR factor = 0.207; data-to-parameter ratio = 14.8.

The title compound, $[Mg(C_{10}H_8N_2)(H_2O)_4](C_7H_4FO_2)_2$, consists of a bivalent $[Mg(C_{10}H_8N_2)(H_2O)_4]^{2+}$ cation and two 4-fluorbenzoate anions. In the complex cation, the Mg^{II} atom is coordinated by two N atoms from a 2,2'-bipyridine ligand and four water O atoms in a distorted MgN2O4 octahedral geometry. The Mg^{II} atom is located on a twofold rotation axis and thus a cation exhibits C_2 molecular symmetry. The 2,2'-bipyridine ligands exhibit nearly perfect planarity (r.m.s. deviations = 0.0061 Å). In the crystal, O- $H \cdots O$ and $C - H \cdots O$ hydrogen bonds link the cations and anions into a three-dimensional supramolecular network.

Related literature

For related magnesium(II) complexes with 1,10-phenanthroline and pyridine ligands, see: Halut-Desportes (1981); Hao et al. (2008); Zhang (2004); Zhang et al. (2010).

Experimental

Crystal data $[Mg(C_{10}H_8N_2)(H_2O)_4](C_7H_4FO_2)_2$

 $M_r = 530.76$

Orthorhombic, Pbcn a = 27.911 (6) Å b = 12.423 (3) Å c = 7.5895 (15) Å V = 2631.6 (10) Å³

Data collection

Rigaku R-AXIS RAPID	2316 measured reflections
diffractometer	2310 independent reflections
Absorption correction: multi-scan	1741 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.096$
$T_{\min} = 0.979, \ T_{\max} = 0.987$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.070$	156 parameters
$wR(F^2) = 0.207$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
2310 reflections	$\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.18 \times 0.13 \times 0.10 \text{ mm}$

 $\mu = 0.13 \text{ mm}^{-1}$

T = 290 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O4^{i}$	0.82	1.90	2.715 (4)	172
$O1 - H1B \cdot \cdot \cdot O4^{ii}$	0.82	1.90	2.682 (4)	159
$O2-H2A\cdots O3^{iii}$	0.82	1.84	2.661 (3)	173
$O2-H2B\cdots O4^{ii}$	0.82	1.99	2.796 (5)	167
$C3-H3\cdots O3^{iv}$	0.93	2.55	3.257 (6)	133

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z; (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, z.$

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support by the Education Office of Zhejiang Province (grant No. 20051316) and the Scientific Research Fund of Ningbo University (grant No. XKL09078).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2287).

References

- Halut-Desportes, S. (1981). Rev. Chim. Miner. 18, 199.
- Hao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411-1415.
- Zhang, B.-S., Wu, C.-S. & Xu, W. (2010). Acta Cryst. E66, m1426.

supplementary materials

Acta Cryst. (2010). E66, m1624 [doi:10.1107/S1600536810047690]

Tetraaqua(2,2'-bipyridine- $\kappa^2 N, N'$)magnesium(II) bis(4-fluorobenzoate)

B.-S. Zhang, J.-P. Qiu, L.-H. Liu and W. Xu

Comment

Magnesium(II) ions with 1.10-phenanthroline(phen) and pyridine(bipy) ligands can form tetraaqua(L)_nMagnesium(II)(L = phen, n = 1; L = bipy, n = 2) complex cation (Halut-Desportes, 1981, Hao,*et al.*, 2008, Zhang, 2004, Zhang, *et al.*,2010.) In this paper we report synthesis and structure of the title compound. The crystal structure of title compound consists of $[Mg(H_2O)_4(2,2'-bpy)]^{2+}$ complex cations and 4-fluorbenzoate anion (Fig. 1). the cation placed in special position on twofold axis which passes through Mg^{II} atom and middle C5—C5ⁱ bond of 2,2'-bipy molecule; Symmetry code:(i)-x,y,-z+1/2. In the cation, the Mg^{II} atom is coordinated by two N atoms from one 2,2'-bipy ligands, four O atoms from four different water molecules, completing a distorted MgN₂O₄ octahedral geometry. The Mg—N bond length is 2.183 (3) Å and Mg—O bond lengths are 2.040 (2) and 2.061 (2)Å. The chelating bipy ligands exhibit nearly perfect planarity (r.m.s. deviations = 0.0061 Å). The mean interplanar distances of 3.8352 (3) Å between adjacent bipy ligands indicate π - π stacking interactions (very weak). The complex cations and 4-fluorbenzoate anins are connected via O—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2) into a three-dimensional supramolecular network.

Experimental

 $[Mg(OH)_2.4MgCO_3.4H_2O\}$ (0.4900 g, 1.00 mmol), 4-fluorbenzoate acid (0.0602 g, 0.43 mmol),2,2'-bipyridine (bipy) (0.0503 g, 0.32 mmol), CH₃OH/H₂O (v/v = 1:2, 15 mL) were mixed and stirred for 2.0 h. Subsequently, the resulting cream suspension was heated in a 23 mL Teflon-lined stainless steel autoclave at 453 K for 5800 minutes. After the autoclave was cooled to room temperature according to the procedure for 2600 minutes, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 2 months afforded colourless block single crystals.

Refinement

C-bound H atoms were placed in calculated positions, with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$, and were refined using the riding- model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with an O—H distance restraint of 0.82 (1) Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecule structure of the title compound showing the atom-labelling scheme. The octahedral $[Mg(C_{10}H_8N_2)(H_2O)_4]^{2+}$ complex cation is balanced by two fluorbenzoate anions. The two coordinated water molecules of the complex cation are hydrogen bonded to two anions. Displacement ellipsoids are drawn at the 40% probability level (symmetry code:(i)-x,y,-z+1/2).

Fig. 2. A packing diagram of the title complex, viewed down the *c* axis, The O—H···O and C—H···O hydrogen bonds(dashed lines) in the title compound.

Tetraaqua(2,2'-bipyridine- $\kappa^2 N, N'$)magnesium(II) bis(4-fluorobenzoate)

Crystal data

[Mg(C ₁₀ H ₈ N ₂)(H ₂ O) ₄](C ₇ H ₄ FO ₂) ₂	F(000) = 1104
$M_r = 530.76$	$D_{\rm x} = 1.340 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbcn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -p 2n 2ab	Cell parameters from 665 reflections
a = 27.911 (6) Å	$\theta = 3.2 - 25.0^{\circ}$
b = 12.423 (3) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 7.5895 (15) Å	T = 290 K
$V = 2631.6 (10) \text{ Å}^3$	Block, colourless
Z = 4	$0.18 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer	2310 independent reflections
Radiation source: fine-focus sealed tube	1741 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.096$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -33 \rightarrow 33$
$T_{\min} = 0.979, T_{\max} = 0.987$	$k = -14 \rightarrow 14$
2316 measured reflections	$l = -8 \rightarrow 9$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.070$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.207$	H-atom parameters constrained
<i>S</i> = 1.14	$w = 1/[\sigma^2(F_0^2) + (0.0879P)^2 + 2.3043P]$

	where $P = (F_0^2 + 2F_c^2)/3$
2310 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
156 parameters	$\Delta \rho_{\text{max}} = 0.39 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mg1	0.0000	0.29487 (11)	0.2500	0.0347 (4)
01	0.05496 (9)	0.4005 (2)	0.2115 (3)	0.0536 (7)
H1A	0.0576	0.4581	0.2632	0.080*
H1B	0.0657	0.4124	0.1128	0.080*
O2	-0.01046 (8)	0.2966 (2)	-0.0187 (3)	0.0509 (7)
H2A	-0.0378	0.2905	-0.0568	0.076*
H2B	0.0122	0.3254	-0.0688	0.076*
O3	0.40257 (9)	0.2093 (2)	0.1617 (4)	0.0680 (9)
O4	0.42874 (8)	0.0949 (2)	0.3633 (3)	0.0482 (7)
N1	0.04711 (9)	0.1555 (2)	0.2250 (4)	0.0418 (7)
F1	0.20665 (10)	0.0891 (3)	0.5077 (5)	0.1243 (14)
C1	0.09402 (13)	0.1603 (3)	0.1902 (5)	0.0544 (10)
H1	0.1090	0.2271	0.1896	0.065*
C2	0.12112 (15)	0.0689 (4)	0.1551 (6)	0.0682 (12)
H2	0.1537	0.0746	0.1312	0.082*
C3	0.09930 (15)	-0.0285 (4)	0.1561 (6)	0.0689 (12)
Н3	0.1167	-0.0906	0.1313	0.083*
C4	0.05129 (15)	-0.0346 (3)	0.1944 (6)	0.0586 (10)
H4	0.0360	-0.1011	0.1969	0.070*
C5	0.02579 (12)	0.0585 (3)	0.2293 (4)	0.0415 (8)
C6	0.39599 (12)	0.1476 (3)	0.2874 (5)	0.0426 (8)
C7	0.34578 (6)	0.1330 (2)	0.3515 (3)	0.0454 (8)
C8	0.31097 (9)	0.20812 (19)	0.3063 (4)	0.0666 (12)
H8	0.3192	0.2683	0.2400	0.080*
C9	0.26384 (8)	0.1933 (2)	0.3604 (5)	0.0860 (16)
H9	0.2405	0.2436	0.3302	0.103*
C10	0.25153 (7)	0.1034 (3)	0.4595 (4)	0.0789 (14)
C11	0.28634 (10)	0.0283 (2)	0.5047 (4)	0.0844 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11	0.2781	-0.0319	0.5710	0.101*
C12	0.33346 (9)	0.0431 (2)	0.4506 (4)	0.0663 (12)
H12	0.3568	-0.0072	0.4808	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg1	0.0374 (8)	0.0321 (8)	0.0346 (8)	0.000	-0.0008 (6)	0.000
01	0.0681 (16)	0.0475 (14)	0.0450 (13)	-0.0212 (12)	0.0090 (12)	-0.0062 (12)
02	0.0452 (14)	0.0697 (17)	0.0379 (13)	-0.0083 (12)	-0.0036 (10)	0.0040 (12)
O3	0.0505 (16)	0.076 (2)	0.0771 (19)	0.0115 (13)	0.0175 (14)	0.0332 (16)
O4	0.0473 (14)	0.0502 (15)	0.0472 (13)	0.0034 (11)	-0.0090 (11)	-0.0031 (11)
N1	0.0400 (16)	0.0406 (16)	0.0448 (15)	0.0030 (12)	-0.0008 (12)	-0.0011 (13)
F1	0.0611 (18)	0.169 (4)	0.143 (3)	-0.0280 (19)	0.0441 (18)	-0.016 (3)
C1	0.043 (2)	0.049 (2)	0.071 (3)	0.0030 (16)	0.0017 (18)	-0.0011 (19)
C2	0.047 (2)	0.072 (3)	0.085 (3)	0.015 (2)	0.010 (2)	-0.003 (2)
C3	0.066 (3)	0.052 (3)	0.089 (3)	0.024 (2)	0.006 (2)	-0.008 (2)
C4	0.070 (3)	0.036 (2)	0.070 (2)	0.0086 (18)	0.001 (2)	-0.0039 (18)
C5	0.0502 (19)	0.0371 (18)	0.0372 (17)	0.0012 (15)	-0.0021 (15)	-0.0001 (14)
C6	0.0430 (19)	0.0397 (19)	0.0451 (19)	0.0027 (15)	0.0018 (15)	-0.0051 (16)
C7	0.0430 (19)	0.050 (2)	0.0434 (18)	-0.0033 (16)	0.0019 (15)	-0.0017 (16)
C8	0.051 (2)	0.057 (2)	0.092 (3)	0.0051 (19)	0.013 (2)	0.007 (2)
C9	0.050 (3)	0.086 (4)	0.122 (4)	0.011 (2)	0.016 (3)	-0.004 (3)
C10	0.054 (3)	0.104 (4)	0.079 (3)	-0.017 (3)	0.023 (2)	-0.010 (3)
C11	0.073 (3)	0.112 (5)	0.068 (3)	-0.035 (3)	0.005 (2)	0.027 (3)
C12	0.059 (2)	0.081 (3)	0.059 (2)	-0.013 (2)	-0.0045 (19)	0.020 (2)

Geometric parameters (Å, °)

Mg1—O1 ⁱ	2.040 (2)	C2—H2	0.9300
Mg1—O1	2.040 (2)	C3—C4	1.373 (6)
Mg1—O2	2.061 (2)	С3—Н3	0.9300
Mg1—O2 ⁱ	2.061 (2)	C4—C5	1.384 (5)
Mg1—N1 ⁱ	2.183 (3)	C4—H4	0.9300
Mg1—N1	2.183 (3)	C5—C5 ⁱ	1.473 (7)
O1—H1A	0.8200	C6—C7	1.494 (4)
O1—H1B	0.8200	С7—С8	1.3900
O2—H2A	0.8201	C7—C12	1.3900
O2—H2B	0.8198	C8—C9	1.3900
O3—C6	1.238 (4)	C8—H8	0.9300
O4—C6	1.263 (4)	C9—C10	1.3900
N1—C1	1.337 (4)	С9—Н9	0.9300
N1—C5	1.344 (4)	C10-C11	1.3900
F1—C10	1.317 (3)	C11—C12	1.3900
C1—C2	1.390 (6)	C11—H11	0.9300
C1—H1	0.9300	C12—H12	0.9300
C2—C3	1.355 (6)		
01 ⁱ —Mg1—O1	99.93 (16)	C2—C3—C4	119.3 (4)

O1 ⁱ —Mg1—O2	91.62 (10)	С2—С3—Н3	120.4
O1—Mg1—O2	87.60 (10)	С4—С3—Н3	120.4
O1 ⁱ —Mg1—O2 ⁱ	87.60 (10)	C3—C4—C5	119.8 (4)
O1-Mg1-O2 ⁱ	91.62 (10)	C3—C4—H4	120.1
O2—Mg1—O2 ⁱ	178.78 (17)	C5—C4—H4	120.1
Ol ⁱ —Mg1—N1 ⁱ	92.57 (11)	N1—C5—C4	121.1 (3)
O1-Mg1-N1 ⁱ	167.41 (12)	N1—C5—C5 ⁱ	115.97 (18)
O2—Mg1—N1 ⁱ	90.53 (10)	C4—C5—C5 ⁱ	122.9 (2)
O2 ⁱ —Mg1—N1 ⁱ	90.44 (11)	O3—C6—O4	124.4 (3)
O1 ⁱ —Mg1—N1	167.41 (12)	O3—C6—C7	117.7 (3)
O1—Mg1—N1	92.57 (11)	O4—C6—C7	117.9 (3)
O2—Mg1—N1	90.44 (11)	C8—C7—C12	120.0
O2 ⁱ —Mg1—N1	90.53 (10)	C8—C7—C6	119.6 (2)
N1 ⁱ —Mg1—N1	74.99 (15)	С12—С7—С6	120.4 (2)
Mg1—O1—H1A	124.2	С7—С8—С9	120.0
Mg1—O1—H1B	121.4	С7—С8—Н8	120.0
H1A—O1—H1B	104.3	С9—С8—Н8	120.0
Mg1—O2—H2A	118.7	C8—C9—C10	120.0
Mg1—O2—H2B	110.7	С8—С9—Н9	120.0
H2A—O2—H2B	126.6	С10—С9—Н9	120.0
C1—N1—C5	118.6 (3)	F1-C10-C11	120.4 (3)
C1—N1—Mg1	124.9 (2)	F1—C10—C9	119.6 (3)
C5—N1—Mg1	116.2 (2)	C11—C10—C9	120.0
N1—C1—C2	122.3 (4)	C10-C11-C12	120.0
N1—C1—H1	118.8	C10-C11-H11	120.0
C2—C1—H1	118.8	C12-C11-H11	120.0
C3—C2—C1	118.9 (4)	C11—C12—C7	120.0
С3—С2—Н2	120.5	C11—C12—H12	120.0
C1—C2—H2	120.5	C7—C12—H12	120.0

Symmetry codes: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1—H1A····O4 ⁱⁱ	0.82	1.90	2.715 (4)	172
O1—H1B···O4 ⁱⁱⁱ	0.82	1.90	2.682 (4)	159
O2—H2A····O3 ^{iv}	0.82	1.84	2.661 (3)	173
O2—H2B···O4 ⁱⁱⁱ	0.82	1.99	2.796 (5)	167
C3—H3···O3 ^v	0.93	2.55	3.257 (6)	133
	1/2 1/2 (*)	1/2 1/2 ()	1/0 1/0	

Symmetry codes: (ii) -x+1/2, y+1/2, z; (iii) -x+1/2, -y+1/2, z-1/2; (iv) x-1/2, -y+1/2, -z; (v) -x+1/2, y-1/2, z.

Fig. 1

